02 Function, Object and
File

* Functions, Generators, Co-routines

* Objects and classes, Exceptions and modules
* File Input and Output

Functions

 use the def statement to create a function
def remainder(a,b):
g=al/lb #/lis truncating division.
r=a-q*
return r
« To invoke a function, simply use the name of the

function followed by its enclosed in parentheses,

result = remainder(37,15)

Functions

» To assign a default value to a function parameter,
use assignment:
def connect(hostname, port ,timeout=300):

Generators

« A function can generate an entire sequence of
results if it uses the yield statement.

» next() : produces a sequence of results through
successive calls

Co-routines

* Functions operate on a single set of input arguments.

A function can also be written to operate as a task
that processes a sequence of inputs sent to it.

» This type of function is known as a coroutine and is
created by using the yield statement.

Co-routines

send()

« A coroutineis suspended until a value is sent to
it

close()

 This continues until the coroutine function

returns or close

Objects and classes

» All values used in a program are objects.

* An object consists of internal data and method that

perform various kinds of operations.

>>>items = [37, 42] # Create a list object
>>>jtems.append(73) #Call append() method

Objects and classes

« dir() : lists the methods available on an object and is
a useful tool for interactive experimentation.

» Special methods that always begin and end with a
double underscore. Eg. ___init__ ()

Exceptions

« If an error occurs in program,an exception is raised
and a traceback message appears:

Traceback (most recent call last):
File "foo.py", line 12, in <module>
IOError: [Errno 2] No such file or directory: 'file.txt'

» The traceback message indicates the type of error
that occurred, along with its location.

Modules

* Python allows you to put definitions in a file and use
them as a module that can be imported into other
programs and scipts.

file : div.py

def divide(a,b):
g = a/b #If aand b are integers, q is an integer
r=a-q*h
return (q,r)

n

Modules

« To use your module in other programs, you can use
the import statement:

import div
a, b = div.divide (2305, 29)

 To load all of a module’s contents into the current
namespace, you can also use the following:

from div import *

Modules

« If you want to import a module using a different name,
supply the import statement with an optional as
qualifier, as follows:

import div as foo

a,b = foo.divide(2305,29)

B

Modules

« To import specific definitions into
namespace, use the from statement:

from div import divide

a,b = divide(2305,29)

the current

®
l File Input and Output

' open() = *returns a new file objee

* reads a single line of inpu

\readlme() including the terminating

15

®
t File Input and Output

